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Abstract
We have studied by dynamic light scattering the glass transition dynamics
of a binary mixture of polystyrene microgel particles with a size ratio of
Rsmall/Rlarge = 0.81 and a number ratio of Nsmall/Nlarge ≈ 2.7, where a
short-ranged depletion attraction (δ ≈ 0.06) was induced by addition of
linear polystyrene. This system shows a reentrant glass transition. We have
determined the glass transition lines of this system in the experimental control
parameter space given by the colloid volume fraction ϕ and the polymer
concentration cp by employing the power law of mode coupling theory (MCT)
for the α-relaxation times. We find a reentry region which is much larger than
predicted by theory and reported for another colloidal system with depletion
attractions. Analysing the fluid dynamics along the transition lines with the
β-scaling law of MCT we extract the cp dependence of the exponent parameter
λ and the non-ergodicity parameter f c

q . The results are in qualitative agreement
with the prediction of MCT for increasing attraction strength. The observed
‘jump’ of f c

q is indicative of a change of the close by glass phase from a packing-
driven to a bonding-driven glass. The increase of λ to 0.91 and its subsequent
decrease may indicate the neighbourhood of an A4 singularity.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Colloidal dispersions have served over the past decades as model systems for addressing
fundamental questions of condensed matter science such as crystallization [1, 2], glass
formation [3, 4] and gelation [5]. In particular the understanding of the physics of vitrification
has been significantly improved by the interplay between the mode coupling theory (MCT) of
the glass transition [6] and light scattering experiments on colloidal particles with hard sphere
interactions [7, 8]. All major predictions of the theory have been verified by experiment on
a 10% error basis for this simplest glass forming system [9], thus establishing the role of
MCT as the leading paradigm for the glassy freezing of simple liquids. The theory identifies
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the so-called cage effect—the transient trapping of particles in cages formed by neighbouring
particles—as the dominant mechanism of the dramatic slowing down of structural relaxation on
the increasing packing density. Eventually this slowing down leads to a dynamical arrest of the
particles when the timescale of their structural relaxation becomes larger than the timescale
of the experimental probe—the glass transition occurs. In the neighbourhood of this glass
transition the dynamics is ruled by two scaling laws giving rise to power law divergence of
two timescales—one, τσ , describing the motion of the particles in their respective cages and
the other, τα, corresponding to the breaking up of the cages and escape of particles from them.
As τα diverges faster than τσ the density correlator, f (q, τ ), describing the particle density
fluctuations develops a characteristic two-step decay with the emergence of a plateau which
becomes more extended in time with increasing packing density. In the idealized version of
MCT, structural relaxation stops at the glass transition and only the cage motion prevails [6].
As a consequence the glass transition is indicated by a discontinuous jump of the long-time
limit, f (q,∞), of the density correlator from zero to a finite value f c

q , which describes the
value of a plateau which now extends to infinite times. In this description the glass transition
is a sharp transition from an ergodic to a nonergodic system which takes place at a definite
temperature or packing density.

In real glass forming systems there has been, however, always observed a final decay of the
density correlator which terminates the plateau. Obviously, there exist dynamical processes that
counteract the cage effect by restoring ergodicity, which are not included in the idealized MCT.
The nature of these ergodicity restoring processes is not entirely clear—thermally activated
(or phonon-assisted hopping) processes [10], crystallization [8, 11] and ageing [12, 13] have
been addressed as possible candidates in different contexts. In colloidal dispersions where
phonon-assisted hopping is expected to be absent (due to overdamping via the solvent degrees
of freedom) and crystallization has been effectively suppressed [14] or significantly slowed
down [12] so as to play no role on the timescales relevant for glassy dynamics, nevertheless
some final decay of the density correlators or the tagged particles correlators has been observed
in glassy samples. Here at least, ageing processes seem to be responsible for the long-time
dynamics which lead to deviations from the scenario predicted by the idealized MCT.

Disregarding ageing which affects usually only the dynamics at very long experimental
timescales, the idealized MCT has turned out to provide a universal description of the glassy
freezing of colloidal particles in the sense that the same scaling laws are found for both short-
ranged hard-sphere like [7, 8] and long-ranged Yukawa-like repulsive interactions [15]. The
differences in interactions are only reflected in details such as the numerical values of critical
exponents and glass transition volume fractions. This also applies for Brownian particles
where attractions are present which are long-ranged as compared to the particle diameters, as
can be inferred from computer simulations studies of a binary mixture of Lennard-Jones atoms
with stochastic short-time dynamics [16, 17].

Recently, however, it has been predicted that the glass transition scenario changes
dramatically and that qualitatively new glass physics arises when attractions become very
short-ranged [18–21]. Whereas the glass transition of hard spheres is driven by just one
control parameter, the packing density (or the volume fraction ϕ) of the glass transition
in the case of short-ranged attraction is now controlled by three parameters—the volume
fraction ϕ = ρπd3/6 (where ρ is the particle number density and d the particle diameter), the
dimensionless attraction strength 
 = u0/(kBT ) (where u0 is the depth of the attraction well)
and the relative attraction width δ = �/d . Theory predicts that on increasing the attraction
strength the glass transition volume fraction should recede to higher values if the attraction
range is sufficiently small (e.g. δ < 0.1). Thus the hard sphere glass transition evolves into a
glass transition line in the (ϕ,
) plane. At even higher attraction strengths this line bends back
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again to lower volume fractions and runs more or less parallel to the ϕ-axis. This behaviour
gives rise to a new phenomenon: the reentrant glass transition. By switching on a short-range
attraction a hard sphere glass should melt and on further increase of attraction strength it
should freeze again, however, into another type of glass. The driving force for glassy freezing
should now be the formation of transient bonds which become more and more permanent
with increasing attraction until dynamics is arrested again. This new type of glassy state has
been termed attractive [22] or bonding-driven [23] glass to distinguish it from the familiar
hard sphere glass whose extension into the regime of low attractions strength has been named
correspondingly repulsive or packing-driven glass. One major distinction of this new type of
glass is the absence of the cage effect and a shift of the plateau to such high values that it
becomes difficult to detect experimentally. Due to the distinct natures of the two types of glass
one usually speaks of two branches of the glass transition line—a repulsive and an attractive
one, which join continuously.

Short-ranged attractions where the attraction range is less than 10% of the particle radius
do not exist in atomic or molecular liquids, but they can be realized in colloidal dispersion
by the addition of small non-adsorbing polymer [24]. This is achieved by the well-known
depletion effect, where the polymer chains are excluded from the space between two colloidal
particles at close distance. The resulting misbalance of the osmotic pressure exerted by the
polymers acts then as an effective attractive force. The so-called depletion potential has been
worked out [25–27], indicating that the attraction strength and the attraction range can be
tuned by varying the concentration and the size of the polymer, respectively. This means that
increasing the polymer concentration cp in a colloid–polymer mixture has the same effects
as reducing the temperature in an atomic system. Inducing short-ranged attractions into hard
sphere-like colloidal dispersions in this manner, the reentrant glass transition and the different
characteristics of the bonding driven glass have been verified [14, 23, 28, 29]. In addition, the
reentry phenomenon been has found in a number of simulation studies [28, 30–32].

This scenario again changes if the attraction range becomes very short, e.g. δ = 0.03.
In this case the repulsive glass transition line stops when it meets the attractive one, while
the latter continues and ends in a kind of critical point [21]. In the language of MCT this
point is addressed as an A3 singularity (the repulsive and attractive transition lines are named
A2 singularities). The line between the crossing point and the A3 singularity is the locus
of transition points from packing-driven to bonding-driven glass states. This transition is
reflected in a discontinuous jump of the nonergodicity parameter f (q,∞) [21]. Increasing the
attraction range again towards a characteristic value, δ → δ∗ ≈ 0.04, the glass–glass transition
line shrinks and the A3 singularity approaches the crossing point [33]. A special situation
arises when the A3 singularity and the crossing point coincide (at δ∗). This is the locus of
another higher-order singularity—an A4 singularity. Close to these higher-order singularities
the glass transition dynamics differ significantly from that of the familiar A2 scenario. A most
prominent feature is the appearance of logarithmic decay laws in different time domains of
the density correlators [21]. Such logarithmic decay laws have been observed in simulations
studies [34, 35] and experiments [29, 36]. However, it is not in all cases clear if the observed
logarithmic decays indicate the proximity of an A3 or an A4 singularity, or if they are just
a result of the complicated interplay of the different singularities which can lead to apparent
logarithmic sections in the density correlators as has been indicated by carefully analysing the
dynamics close to the various singularities [37–39]. In addition, it is by no means clear if a
simple mapping between experimental and theoretical control parameters, especially between
the polymer size and δ, is possible, which would allow to localize the A3 and A4 singularities.
This has so far only been achieved in a simulation study [35]. In any case such a mapping
requires at least the localization of the glass transition lines for one attraction range.
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Recently, we have shown for two volume fractions that the phenomenon of reentry exists in
a binary mixture of microgel particles with nearly hard sphere-like interactions when depletion
attractions are introduced by the addition of a non-adsorbing free polymer. In this contribution
we will present and analyse light scattering data in the complete reentry region which allow
establishing the location of the glass transition lines. By analysing the lines shape of the
density correlator along the transition lines we will address the question of the occurrence and
location of higher order singularities in our system.

2. Experimental details

2.1. System characteristics

The studied colloidal dispersion consists of a binary mixture of polystyrene microgel particles
with a stoichiometric crosslink density of 1:50 (1 crosslink per 50 monomers; crosslinker:
m-diisopropenylbenzene) in the good and isorefractive solvent 2-ethylnaphthalene with the
size ratio Rsmall/Rlarge = 185 nm/150 nm = 0.81 and a number ratio of Nsmall/Nlarge = 2.65.
The intrinsic polydispersity (σ = 0.08) of the individual components is small enough for
crystallization to proceed. This allowed studying the phase behaviour of the individual
components from which information about interactions and absolute volume fractions of
the studied samples was obtained as discussed elsewhere [14]. Adding the two components
results in a bimodal particle size distribution which corresponds to an effective polydispersity
σ = 0.12. This is sufficient to effectively suppress crystallization in the mixture, thus allowing
access to glass transition dynamics even at the longest decay times. Analysing the phase
behaviour an interaction potential u(r) ∝ r−35±2 was derived. Thus, the particle interactions
are sufficiently hard to closely approximate hard sphere behaviour. At the same time the
swelling leads to a significant solvent uptake of the particles (only about 16% of the sphere
volume is occupied by polymer). Since the solvent is almost isorefractive and close in density
with respect to the polymer, multiple scattering is absent and the particles are effectively
buoyancy-matched as well such that the influence of gravity is negligible. That the binary
mixture can indeed be mapped onto a one-component hard sphere system with an effective
polydispersity of 12% was confirmed by analysis of the volume fraction dependence of the static
structure factor [14]. Similarly the glass transition dynamics could be consistently interpreted
within MCT in terms of an effective one-component system [40]. A first analysis within the
β-scaling law (equation (2) below) provided an exponent parameter λ = 0.78, a nonergodicity
parameter f c

qmax
= 0.80 and a glass transition volume fraction ϕg = 0.596 [14]. The slight

deviations from the reported hard-sphere values (λ = 0.76, f c
qmax

= 0.85, ϕg = 0.58) [11, 41]
can be explained by the broadening of the particle size distribution [40].

To prepare a non-crystallizing colloid–polymer mixture with a size ratio δ =
Rg,polymer/Rcolloid = 0.054 (with respect to the average radius of the particles in the binary
colloid mixture) varying amounts of linear polystyrene (Rg = 8.6 nm, Mw = 136 000 g mol−1,
Mw/Mn = 1.04; from Polymer Standards Service GmbH) were added to the binary colloidal
mixture of 1:50 crosslinked microgel particles. To this purpose appropriate amounts of dry
linear polymer were added to a stock dispersion of the binary mixture and the colloid–polymer
mixture was then homogenized by tumbling over several weeks.

2.2. Light scattering experiments

The particle dynamics close to the colloid glass transition were studied with a self-made
light scattering setup that is especially optimized for very slow dynamics. The setup has
been described elsewhere [42]. Here we only address modifications that have been newly
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implemented. As compared to previous work, a beam splitter cube has been introduced in order
to simultaneously monitor the fluctuations of the scattered intensity by a photomultiplier and
by a CCD (charge coupled device). The latter was earlier used separately as an area detector
in the so called multispeckle correlation spectroscopy (MSCS) to monitor ultraslow glass
transition dynamics or determining the ensemble-averaged intensity autocorrelation function
in nonergodic systems by averaging over a large number of independent Fourier components,
i.e. speckles [43]. The advantage of simultaneous detection is twofold: the uncertainty of the
comparability of MSCS data with standard DLS data of the same sample measured at different
times (e.g. due to ageing) is avoided and the time demand per sample is reduced. Due to
hardware refurbishing the number of simultaneously detectable speckles has been increased to
300 and the shortest lag times accessible have been reduced to 100 ms. This allows for a better
ensemble-averaging and at the same time provides a larger overlap with the traditional DLS
curves which are used for normalizing the MSCS curves [43]. A HeNe-laser (JDS Uniphase)
with λ = 633 nm and a power output of 17 mW was used for the measurements.

The determination of the density autocorrelation function f (q, τ ) followed the same
strategy as laid out previously [42]. For ergodic samples where the longest relaxation time,
i.e. the α-relaxation time τα , was much smaller than the chosen sampling time T , the measured
intensity autocorrelation function g(2)

T (q, τ ) = 〈I (q, t) · I (q, t + τ )/〈I (q, t)〉2
T (〈 〉T denotes

a time average) was converted into f (q, τ ) using the Siegert relation [44]. For samples close
to and above the ergodic–nonergodic transition where τα became comparable or longer than
the sampling time T the short time behaviour of f (q, τ ) was obtained by standard DLS
measurements using the Pusey–van Megen procedure [45] for conversion of g(2)

T (q, τ ) into
f (q, τ ). For obtaining the long-time part of f (q, τ ) we used the MSCS method to directly
measure the ensemble average of the intensity correlation function g(2)

E (q, τ ) by averaging over
300 independent speckles. To match the MSCS data to the DLS data, the f (q, τ ) curves of the
latter were used to calculate the short-time part of g(2)

E (q, τ ) to which the MSCS data were then
matched in the overlap region (typically 0.1 s � τ � 10 s) and the resulting curve was then
reconverted to f (q, τ ), using the Siegert relation in both transformations. Typically, intensity
fluctuations have been sampled for a day and the data of five independent measurements have
been averaged for each volume fraction close to and above the glass transition. Due to the
polydispersity of the mixture no traces of crystallization were detected even over observation
times of more than a month.

In order to determine the glass–fluid phase diagram and to establish the glass transition
lines it is necessary to distinguish fluid from glassy samples. This task cannot be solved
without some ambiguity. In theory, nonergodicity is defined by the occurrence of a non-zero
value of the long-time limit of the density correlator f (q, τ ) with the implication that the
decay of density fluctuations levels off at a plateau. In experimental practice this condition is,
however, rarely met. What is typically observed on approaching the colloid glass transition
is the emergence of a plateau which extends for some range of decay times τ and is then
truncated by a long-time decay. This is demonstrated in figure 1, where the slowing down
of the dynamics of the pure binary mixture is depicted. That this long-time decay is not
simply due to instrumental instability can be concluded from the fact that the timescale of
this final decay shifts systematically to longer times with increasing packing density. Some of
these curves at higher volume fractions do not decay to zero within the experimental probing
time. Such samples are not nonergodic in the strict theoretical sense, but ‘non-ergodic on the
timescale of the experiment’ with the meaning that some density fluctuations are so slow that
they do not decay within the probing time and appear frozen. Pusey and van Megen [45] have
shown that this ‘loss’ of the slowest density fluctuations leads to a deviation of the exponential
distribution of intensity values characteristic of an ergodic system. As a consequence, the
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Figure 1. Density correlators f (q, τ ) for a binary mixture of 1:50 crosslinked polystyrene microgel
particles with a size ratio of 0.81 and a number ratio small/large of 2.65. The data were taken at
q = qmax, where qmax corresponds to the peak of S(q). The sample volume fractions are: 0.579,
0.581, 0.587, 0.592, 0.595, 0.6, 0.61 and 0.674 (from left to right). Glass samples are indicated
by thick curves. The inset shows the intercepts ( ) of the intensity correlation functions of the
corresponding samples from which a glass transition at ϕ = 0.593 is derived (see text). The solid
circle marks the sample at ϕ = 0.595 which coincides with ϕg within symbol size.

intercept g(2)
T (q, 0) = 〈I (q, t)2〉T /〈I (q, t)2

T , which corresponds to the second moment of the
intensity distribution divided by the square of its first moment, is reduced to smaller values
than 2, the value characteristic for an ergodic system.

Thus the intercept can be used as a convenient measure to quantify the ‘amount’ of frozen
density fluctuations in a system. Its volume fraction dependence for the binary mixture is
shown in the inset of figure 1, where averages over repeated measurements have been taken.
It starts at a value just below 2 (this difference being due to experimental imperfections),
and shows a linear decay in a narrow volume fraction range and levels off at a value around
1.5. This behaviour has been observed for all systems at a colloid glass transition studied so
far [42, 46], only the saturation value was found to vary slightly. It corresponds to a narrow
transition range within which more and more density fluctuations become frozen. To connect
this behaviour to a finite glass transition volume fraction we take the ‘centre of balance’ of
the intercept values as indicated by the middle horizontal line and associate the corresponding
volume fraction with ϕg. This, at first glance, somewhat arbitrary procedure was found to
provide a very good estimate of the location of the glass transition described by MCT [42, 46].
(Note that in earlier work [42] the width of the distribution of intercepts has been used instead
of the mean value as in recent work; however, both procedures were found to yield the same
result for ϕg.) The ϕg-values found from extrapolation with the various power laws of MCT
were always in agreement with those derived from the intercept analysis within experimental
accuracy. This is indicated by the solid circle in the inset of figure 1 which indicates the glass
transition point as derived from the β-scaling law of MCT (see below). Further support for the
correctness of our assignment of samples as glassy is the observation that all samples below
the thus determined ϕg show α-scaling, whereas those above violate it [40]. This is already
visible in figure 1, where the thin lines show nearly identical line shapes at long times, whereas
the first thick line obviously deviates.
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While these two procedures to locate the glass transition appear to be very reliable, they
are not fully applicable to a colloid–polymer mixture for practical reasons. This would require
measuring of the order of ten samples for each of a number of points along the surmized
glass transition line in the (
, ϕ) plane, and so the time demand is forbiddingly high. Instead
we chose as an operational definition to consider all samples as glassy where the intercepts
averaged over a number of measurements was lower than 1.8. This choice was made on the
basis of our observation that a moderate reduction of the intercept was found even for samples
which were identified as fluid (cf the thin curves in figure 1 and the corresponding squares in
the inset).

3. Theory

In the following we will analyse the dynamics of our binary mixture of microgel particles with
added linear polymer along the glass transition lines within mode coupling theory. Therefore,
we briefly recall the equations necessary for our data analysis. For a detailed description of
the theory and its predictions the interested reader is referred to the literature [9, 10, 47].

The structural relaxation of a N particle system is usually described by the autocorrelation
function of density fluctuations f (q, τ ),

f (q, τ ) = 1

N S(q)

∑

j,k

〈
exp

{−i�q�r j (0)
}

exp
{
i�q�rk (τ )

}〉
E

(1)

where �rk (τ ) is the position of particle k at time τ and 〈· · ·〉E indicates an ensemble average.
f (q, τ ) is calculated by mode coupling theory via a generalized Langevin equation, the only
input necessary being the static structure factor S(q), which in turn can be calculated starting
from the interaction potential. At packing densities close to the glass transition the decay of
f (q, τ ) to the plateau and the initial decay from the plateau is described by the β scaling law:

f (q, τ ) = f c
q + H (q)g ± (τ/τσ ). (2)

This law is the result of an asymptotic solution of the mode coupling equations which describes
to first approximation the density correlator in the limits ϕ → ϕg and | f (q, τ ) − f c

q | → 0.
Here, f c

q is the finite long-time limit to which f (q, τ ) decays at the ideal glass transition.
g±(τ/τσ ) is a volume fraction and q independent universal master function (the plus sign
refers to ϕ > ϕg and the minus sign to ϕ < ϕg), its functional form being fully determined by
a single number, the exponent parameter λ, via a combination of two power law expansions,
whose exponents a, b and whose expansion coefficients are completely determined by λ [48].

For the long-time decay, τ 	 τσ , the so-called α-relaxation, another asymptotic scaling
law holds:

f (q, τ ) = f c
q Gq (τ/τα) . (3)

Here Gq(τ/τα) is a q-dependent master function and the scaling time τα obeys another power
law:

τα = t0

∣∣∣∣
ϕg − ϕ

ϕg

∣∣∣∣
−γ

, γ = (1/2a) + (1/2b) . (4)

The advantage of the above asymptotic solution is that it is easily applicable irrespective
of the specific form of the interaction potential as this is contained in the value of the exponent
parameter λ, the latter being calculated using the static structure factor of the system of
interest. The exponent parameter containing the information about particle interactions is
in the following treated as just another fit parameter. In the case of a colloid dispersion where
short-ranged attractions are present λ is expected to vary with increasing attraction strength
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Figure 2. Reentrant glass transition at a colloid volume fraction of 0.69. The polymer (polystyrene)
concentration cp in g l−1 is indicated by the numbers at the curves which were measured at qmax.
The dashed curves represent glassy samples as indicated by the decrease of intercepts shown in the
inset. Note the presence of a incipient plateau for the glassy sample at low cp. This is indicative of
the cage effect and is absent in the glassy sample at high cp, underlining the different nature of the
two types of glass states.

(i.e. increasing polymer concentration), increasing from its hard sphere value to a maximum
value between 0.9 and 1 (close to an A3 or A4 singularity, depending on the attraction range
δ) and then decreasing again (cf figure 6 of [21]).

4. Results and discussion

First we want to demonstrate that the reentrant melting region extends to very high volume
fractions, much higher than reported for a hard-sphere system [28, 29]. In figure 2 density
correlators f (q, τ ) are shown for an average colloid volume fraction of 〈ϕ〉 = 0.69 (the small
drift being due to the dilution effect on adding polymer solution to a colloid stock dispersion)
and for increasing polymer concentrations cp ranging from 4.6 to 10.6 g l−1. At a polymer
concentration of 4.6 g l−1 the sample is glassy, as can be seen from the intercept value which is
depicted in the inset. It shows an incipient plateau which is characteristic of a packing-driven
glass. The final decay is most likely due to ageing effects. At cp = 5.2 g l−1 the sample is
in a fluid state, its line shape corresponding to that of a supercooled liquid. The intercept has
increased to about 2. Obviously, the small increase of attraction strength corresponding to
this slight increase in the polymer concentration is sufficient to melt the glass. At a polymer
concentration of 6.3 g l−1 the dynamics has sped up by two orders of magnitude and the
sample shows an f (q, τ ) which is typical for a normal liquid. On further increasing the
polymer concentration the dynamics slows down again and the system undergoes another
glass transition between cp = 9 and 10.6 g l−1 as is indicated by the intercepts. The density
correlator at 10.6 g l−1 polymer shows no trace of a plateau and only the value of the intercept
indicates that the corresponding sample is nonergodic. The lack of the cage effect indicates
that the system has frozen into a bonding-driven glass.

As compared to ϕ ≈ constant cuts at lower volume fractions [14, 23] the reentry region is
much narrower, corresponding to �cp of about 5–6 g l−1 as compared to 7–8 g l−7 at ϕ = 0.67
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Figure 3. Phase diagram of the binary polystyrene microgel colloid mixture with added linear
polystyrene. ϕ and cp indicate the colloid volume fraction and the polymer concentration in g l−1,
respectively. Open circles represent fluid samples. Solid circles have been identified as glassy
samples via the intercept criterion (see text). Shaded circles indicate those samples which were
analysed by fitting the density correlators f (q, τ ) with the β-scaling law of MCT, equation (2). The
f (q, τ ) of the numbered samples and corresponding fits are shown in figure 4. The extrapolated
location of the glass transition line (see text) is shown as a dashed curve. The vertical line gives
the glass transition of the pure binary microgel mixture.

and 13–15 g l−1 at ϕ = 0.62. In order to explore the full reentry region various other cuts at
constant volume fraction were made. Figure 3 gives an overview over the measured samples.
Samples which showed nonergodic behaviour according to the intercept criterion as explained
in section 2.2 are indicated by solid circles, whereas fluid samples are given by the open circles.
The dashed vertical line indicates the location of the glass transition of the pure binary mixture.
The dotted curve indicates the glass transition line. It has been determined by using the power
law for the α-relaxation times τα, equation (4), in its linearized form, i.e. τ

−1/γ
α ∝ |ϕ − ϕg|.

The two samples closest to the transition (as indicated by the nearest glassy sample) in a
given region of the phase diagram, figure 3, were taken for extrapolation and the hard sphere
value of γ = 2.55 was employed (a more detailed description of the procedure will be given
elsewhere) [40]. As can be seen from figure 3, the extrapolation procedure is consistent with
the light scattering data in the sense that all solid circles indicating glassy samples are situated
outside the reentry region or on the transition line.

The reentry region in our system is very large, amounting to �r = (ϕg,max −
ϕg,H S)/ϕg,H S = 0.17–0.19. This is significantly larger than the maximum reentry predicted
by MCT [21, 33] which was �r = 0.04–0.05 at much smaller values for the attraction range
(δ = 0.03 and 0.01, respectively). It is also much larger than the value for a hard sphere system
of PMMA colloids with polystyrene as the non-adsorbing polymer, where it can be estimated
to be around �r = 0.07 for δ ≈ 0.09 (from figure 1 of [29]). There are different possible
reasons for this large reentry region, especially as compared to the PMMA hard sphere system.
One obvious possibility is that the particles deform at high volume fraction due to their inherent
softness. Another reason could be the occurrence of osmotic deswelling of the particles, an
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effect that has been reported for microgel particles [49]. A third alternative is polydispersity,
i.e. that the broad bimodal size distribution allows for a more efficient packing of the particles.

We think that osmotic deswelling or a permanent deformation can be ruled out as possible
causes for the occurrence of an extended reentry region with very high volume fractions in our
case. When determining the static structure factors S(q) of our systems we divide the measured
static light scattering intensities at high concentrations, which are given by Iconc ∝ P(q)S(q)

by those measured in dilute dispersion, i.e. Idil ∝ P(q) [24]. Shrinkage of the microgel
particles at high concentrations would lead to a shift of the minimum of the form factor P(q)

of the spheres as compared to the dilute case. Thus we would divide by a wrong P(q) which
would lead to deformations of S(q) which should be easy to detect. This has never been
observed even at the highest volume fractions. The same argument applies for a significant
sphere deformation. In addition, the repulsive part of the interaction potential is steeper than
in the case of a Lennard-Jones potential, making deformations impossible except for short-
time collision events. Therefore, a more efficient packing of the microgel spheres due to
the broad bimodal particle size distribution is the most likely explanation. From computer
simulation studies [50] it is known that polydispersity shifts the volume fraction of random
close packing ϕrcp to higher packing densities. For polydispersities between σ = 0.1 and 0.15
one findsϕrcp = 0.68, which is, however, considerably smaller than the largest volume fractions
achieved in this work. For ϕrcp = 0.71 the cited simulation study requires σ = 0.3 which is
clearly beyond the polydispersity of our system. However, it has to be considered that in the
simulation a Gaussian distribution of particle size was employed. It is reasonable to assume
that a bimodal distribution allows for an even more efficient packing of the spheres. In addition,
there are indications that in binary mixtures or polydisperse dispersions nanocrystalline order
can take place. In a video microscopy study of fluoropolymer/polystyrene microgel core/shell
particles we have observed a coexistence of amorphous and nanocrystalline regions [51] and
in another microscopy study of binary mixtures of magnetic beads in a thin layer ordering in
the form of nanoclusters has been found [52]. Such nanocrystalline order would, indeed, allow
for a more efficient packing of spheres.

In the following we will analyse the density correlators of those fluid samples which trace
the glass transition line (given as shaded circles in figure 3) with the β-scaling law of MCT,
equation (2). For the most interesting samples, indicated as 1–3 in figure 3, the f (q, τ ) curves
are depicted in figure 4 together with the corresponding fits. All samples at lower polymer
concentrations than sample 1 show line shapes qualitatively similar to this one. The cage
effect is present, indicated by the incipient plateau and the density correlators can be well
described by a fit with the β-scaling law. This situation changes dramatically when increasing
the polymer concentration from 5.2 to 7.2 g l−1. Sample 2 shows a completely different line
shape. One finds a monotonous decay without any trace of a plateau. As a consequence only
the intermediate region of the f (q, τ ) curve can be fitted by the β-scaling law. In essence this
means that only the long-time part of the master function g±(τ/τσ ), which is described by
a power expansion [48] whose leading term corresponds to the familiar von Schweidler law,
f (q, τ ) = −B(t/τα)b, is expressed in the line shape of the correlator. In contrast, the critical
decay (τ/τσ )−a which is the leading term of the short-time expansion of g±(τ/τσ ) is absent.

Another feature which distinguishes the line shapes of samples 1 and 2 is the long-
time decay. This part of the correlator is typically described by a stretched exponential on
approaching the packing driven glass state. In the case of sample 2 one finds, in contrast,
indications of a logarithmic decay as indicated by the chained straight line in figure 4(b). This
feature is even more pronounced in sample 3, where the log(τ ) behaviour extends to about
two decades in time. At the same time the range of validity of the long-time part of the β-
scaling law decreases from four to three orders of magnitude. Even though the observation of
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Figure 4. Density correlators f (q, τ ) at qmax of samples marked as 1–3 in the phase diagram
figure 4. Dashed curves show fits with the β-scaling law of MCT, equation (2). The chained straight
lines indicate that the long-time decays of samples 2 and 3 are exposing logarithmic behaviour.

log(τ ) behaviour is very intriguing it is by no means clear whether this feature indicates the
neighbourhood of a higher-order singularity as apparent log-laws may result as well due to an
interplay of different singularities [37–39, 48].

To further elucidate this we reproduce in figure 5 the variation of the exponent parameter
λ and the non-ergodicity parameter f c

q along the transition line as they were obtained by the
fits of the density correlators with the β-scaling law, equation (2). Within the considerable
scatter of data, which reflects the difficulty to fit with an asymptotically valid scaling law
line shapes where the range of validity is unknown and shrinks in an uncontrollable manner
along the transition line, the results for λ show qualitatively the trend predicted by theory
(cf figure 6 of [21]). One finds that λ increases from the hard sphere value of 0.76, reaches a
maximum of 0.91 and then decreases to 0.84 again. Comparing our data with those predicted
by theory for δ = 0.06 it is tempting to state a close similarity which would fit nicely in with the
value of δ = 0.054 considered to apply for our system. However, this similarity might just be
fortuitous, given the scatter in the λ values, the lack of knowledge of how experimentalδ-values
are mapping onto theoretical δ values and the considerable uncertainty of the correct value of
δ for our system (note that there are different numerical relationships between the molecular
weight and the radius of gyration for polystyrene chains reported in the literature in addition
to the experimental error in the appropriate colloid radius for our binary colloid mixture).

The non-ergodicity parameter f c
q resulting from the fits shows a sharp increase in a very

narrow range of polymer concentrations. This clearly underlines the change in the nearby
glass phase from a packing-driven to a bonding-driven glass. Again the qualitative agreement
with theoretical predictions (cf figure 7 of [21]) is encouraging. There a sharp jump of f c

q
when crossing the glass–glass transition line was predicted. Here we do not cross this line, but
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Figure 5. Variation of the exponent parameter λ and the nonergodicity parameter f c
q along the

glass transition lines in dependence of the polymer concentration cp. The results were obtained by
fitting the f (q, τ ) for the samples indicated by the shaded circles in figure 3 with the β-scaling law
of MCT, equation (2). Exemplary fits are shown in figure 4.

trace the fluid–glass transition line on the fluid side. Nevertheless, a signature of this jump—
possibly smeared out—can be expected to be seen on this path as well [53]. The ‘jump’ from
0.8–0.85 to 1 in our data, which were taken at the peak of the static structure factor, was much
more pronounced than reported by theory (from 0.95 to 1). The non-ergodicity parameter
is known to follow the oscillations of S(q) [6, 54]. As the theory data follow a path within
the glass state where the peak of S(q) is higher than in the fluid state, this difference is to
be expected. In addition, due to the polydispersity the structure factor peak in our system is
reduced as compared to a monodisperse system as treated by theory, which may contribute to
the difference as well. A similar difference between the nonergodicity parameters of both types
of glass was also reported for PMMA hard sphere colloids [29]. There, however, the ‘jump’
could not be located due to crystallization in the fluid samples close to the transition lines.

In our case the ‘jump’ in f c
q and the maximum of the exponent parameter λ allow at

least a rough estimate in which range of polymer concentrations a higher-order singularity—if
present—should be looked for. It should be close to samples 1 and 2. From the position
of these samples in the reentry region and the λ versus cp data, one can speculate—keeping
the problems of mapping and experimental inaccuracies in mind—that an A4 singularity is
close to these samples, however, at a shorter attraction range (i.e. lower value of δ). This is
consistent with a recent computer simulation [35] where the A4 singularity has been located
and the dynamics close to it were studied. The density correlators found at qmax for a state point
located in a similar region of the phase diagram as our samples 2 and 3 show a close resemblance
to our data. In this simulation it is shown that the ‘true’ log(τ )-behaviour characteristic of a
neighbourhood of a higher-order singularity is visible only at wavevectors much higher than
qmax, whereas it is completely masked by corrections to the asymptotic log-law at qmax. Thus,
it is very likely that the logarithmic decays seen in our data are only apparent ones, but that
nevertheless the corresponding samples are close to an A4 in (ϕ, cp, δ) space. To clarify this
point, further experiments are necessary where the wavevector is varied and the attraction
range is decreased. Such experiments are currently in progress.

5. Conclusion

The addition of linear polymer to a binary mixture of microgel particles leads to the
phenomenon of a reentrant glass transition. The reentry region, determined by applying the
power law of mode coupling theory for the α-relaxation times to localize the glass transition
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lines by extrapolation, was found to be much larger than both predicted by theory and found for
PMMA hard sphere colloids. This can most likely be explained to a large extent by the broad
bimodal distribution of particle sizes which allows for more efficient packing. Analysing the
density correlators by tracing the glass transition lines in the fluid side by the β-scaling law
of mode coupling theory we find characteristic changes of the exponent parameter λ and the
non-ergodicity parameter f c

q which are in qualitative agreement with predictions of the theory.
The observed ‘jump’ of f c

q on increasing the polymer concentration, and thus increasing the
attraction strength, is indicative of a change from a packing-driven to a bonding-driven glass.
The increase of λ to a maximum value of 0.91 and the subsequent decrease can be interpreted
by the neighbourhood of a higher-order singularity. This singularity, if really present, is
most likely an A4 singularity situated at a smaller attraction range (smaller value of δ). To
substantiate this speculation further experiments and a careful mapping of experimental control
parameters onto those of theory are required.
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[42] Bartsch E, Frenz V, Baschnagel J, Schärtl W and Sillescu H 1997 J. Chem. Phys. 106 3743
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